Magnetic Nanoparticles in Medicine: A Review of Synthesis Methods and Important Characteristics

نویسنده

  • ALI YADOLLAHPOUR
چکیده

Recent technological advances in the synthesis and design of magnetic nanoparticles (MNPs) have opened various avenues for these materials in medical applications. These technologyfacilitated features as well as intrinsic features make MNPs as an ideal choice in different medical diagnostic and treatment applications. Some of important attributes of MNPs that make MNPs great choice for medical applications are non-toxicity, biocompatibility, and high-level aggregation in the desired tissue. In addition, these features make MNPs an interesting candidate for drug delivery systems, magnetically assisted transfection of cells and magnetic hyperthermia, and contrast agent for magnetic resonance imaging. These nanoparticles can be synthesized by various methods which can determine their main physical and chemical characteristics. This paper reviews the most common methods for synthesis of MNPs as well as the important features that can be modulated during the synthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review of Recent Advances in Iron Oxide Nanoparticles as a Magnetic Agent in Cancer Diagnosis and Treatment

Aims In recent years, iron oxide nanoparticles have shown incredible possibilities in biomedical applications due to their non-toxic function in biological systems. Furthermore, these nanoparticles have multifunctional applications, such as antibacterial, antifungal, and anticancer effects in medicine due to their magnetic properties.  Methods & Materials In this article, 49 articles related t...

متن کامل

Core-shell nanoparticles for medical applications: effects of surfactant concentration on the characteristics and magnetic properties of magnetite-silica nanoparticles

Objective(s): The use of cationic surface-active agents (surfactant) in the synthesis of nanoparticles, with formation of micelle, can act as a template for the formation of meso-porous silica. Changes in the concentration of surfactants can affect the structures and properties of the resulting nanoparticles.Materials and Methods: Magnetite nanoparticles were prepared as cores using the c...

متن کامل

Synthesis and loading of nanocurcumin on iron magnetic nanoparticles modified with chitosan

Background: Curcuma longa generally known as turmeric includes curcuminoids and sesquiterpenoids as components, which are known to have antioxidative, anticarcinogenic, and anti-inflammatory activities. Iron, magnetite, and hematite as a micronutrient play an important role in physiological and chemical processes. Chitosan is a natural polymer derived from chitin and is recognized as versatile ...

متن کامل

کاربرد نانوذرات مغناطیسی آهن اکسید در فرآیند تثبیت بیومولکول‌های زیستی

Introduction: Because of their unique properties, magnetic nanoparticles have attracted the attention of many researchers in various fields. The stabilization enzyme on functionalized magnetic nanoparticles, with the maintenance of free protein activity and optimal stability, have been developed by various surface modification techniques. This review focused on the methods for  modificatio...

متن کامل

An Overview of Cobalt Ferrite Core-Shell Nanoparticles for Magnetic Hyperthermia Applications

Cobalt ferrite nanoparticles (CoFe2O4) are well known for some distinctive characteristics such as high magnetic permeability and coercive force, good saturation magnetization, excellent physical, and chemical stability, which make them so attractive for magnetic storage, magnetic resonance imaging (MRI), drug delivery, optical-magnetic equipment, radar absorbing materials...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015